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and I. E. Garrick

_Y

An experimental and analytical investigation of the flutter of

uniform sweptback cantilever wings is reported. The experiments employed

groups of wings sweptback by rotating and by shearing. The angle of

sweep ranged from 0° to 60 ° and Mach numbers extended to approximately 0.9.

Comparison with experiment indicates that the analysis developed in the

present paper is satisfactory for giving the main effects of sweep for

nearly uniform cantilever wings of moderate length-to-chord ratios. A

separation of the effects of finite span and compressibility in their

relation to sweep has not been made experimentally but some combined

effects are given. A discussion of some of the experimental and theoret-

ical trends is given with the aid of several tables and figures.
e

INTRODL_TION

The current trend toward the use of swept wings for high-speed

flight has led to an analytical investigation and an accompanying explor-

atory program of research in the 4_-foot-diameter _angley flutter tunnel

for study of the effect of sweep on flutter characteristics.

In references 1 and 2 preliminary tests on the effect of sweep on

flutter are reported. In these experiments, simple semirigid wings were

mounted on a base that could be rotated to give the desired sweep angle.

In the series of tests reported in reference 1 the flutter condition was

determined at low Mach number on a single wlng for various sweepback

angles and for two bending-torsion frequency ratios. The tests of refer-

ence 2 were conducted at different densities and at Mach numbers up

to 0.94 with sweep angles of 0° and 45 °.

Since the wings used in references i and 2 had all the bending and

torsion flexibility concentrated at the rootj there was a possibilifiy

that this method of investigating flutter of swept wings neglected

I A  TED



2 NACA i_4 No. L_30

important root effects. The experimental studies reported herein were

conducted to give a wider variation in pertinent parameters and employed

cantilever models. In order to facilitate analysis, the cantilever

models were uniform and untapered. The intent of the experimental progr_n

was to establish trends and to indicate orders of magnitude of the various

effects, rather than to isolate precisely the separate effects.

The models were swept back in two basic manners - shearing and

rotating. In the case of wings which were swept back by shearing the

cross sections parallel to the air stream, the span and aspect ratio

remained constant. In the other manner, a series of rectangular plan-

form wings were mounted on a special base which could be rotated to any

desired angle of sweepback. This rotatory base was also used to examine

the critical speed of sweptforward_wings.

Tests were conducted also on special models that were of the

"rotated" ty_e (sections normal to the leading edge were the sam_ at all

sweep angles) with the difference that the bases were aligned parallel

to the air stream. Two series of such rotated models having different

lengths were tested.

Besides the manner of sweep, the effects of several parameters were

studied. Since the location of the center of gravity, the mass-density

ratio, and the Mach number have important effects on the flutter

characteristics of unswept wings, these parameters were varied for

swept wings. In order to investigate possible changes in flutter charac-

teristics which might be due to different flow over the tips, various

tip shapes were tested in the course of the experimental investigation.

In an analysis of flutter, vibrational characteristics are very

significant; accordingly, vibration tests were made on each model. A

special study of the change in frequency and mode shape with angle of

sweep was made for a simple dural beam and is reported in appendix A.

Theoretical analysis of the effect of sweep on flutter exists only

in brief or preliminary forms. In 1942 in England, W. J. Duncan estimated,

by certain dimensional considerations, the effect of sweep on the flutter

speed of certain specialized wing types. Among other British workers are

R. McKinnon Wood and A. R. Collar. In reference 3, a preliminary analysis

for the flutter of swept wings in incompressible flow is developed and

applied to the experimental results of reference 1. Examination of the

limiting case of infinite span discloses that the aerodynamic assumptions

employed in reference 3 are not well-grounded. (An analysis giving an

improved extension of the work of reference 3 is now available as

reference 4. Reference 4, however, appeared after the present analysis

was completed and is therefore not discussed further.)

In the present report a theoretical analysis is developed anew and

given a general presentation. Application of the analysis has been

limited at this time to those calculations needed for comparison with

experimental results. It _s hoped that a wider examination of the effect

of the parameters, obtained analytically, will be made available later.

W
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SYMBOLS

b

b r

c

A

Ag

half chord of wing measured perpendicular to elastic axis,
feet

half chord perpendicular to elastic axis at reference station,
feet

effective length of wing, measured along elastic axis, feet

wing chord measured perpendicular to elastic axis, inches

length of wing measured along midchord llne, inches

angle of sweep, positive for sweepback, degrees

geometric aspect ratio A)2
Zc

X !

!
Y

!
z

Z

h

e

fh(Y')

fe(Y!)

t

co

coordinate perpendicular to elastic axis in plane of wing,
feet

coordinate along elastic axis, feet

coordinate in direction perpendicular to x'y' plane, feet

coordinate of wing surface in z' direction, feet

nondimensional coordinate along elastic axis (y '/_ !)

coordinate in wind-stream direction

bending deflection of elastic axis, positive downward

torsional deflection of elastic axis, positive with leading

edge up

local angle of deflection of elastic axis in bending

(tan-i _y_V)

deflection function of wing in bending

deflection function of wing in torsion

time

angular frequency of vibration, radians per second
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_h

mm

fhI

fh2

ft

fm

fe

fR

V

Ve

v n

V e

VR

VR '

VA

angular uncoupled bending frequency, radlans per
second

angular uncoupled torsional frequency about elastic axis,

radians per second

first bending natural frequency, cycles per second

second bending natural frequency, cycles per second

first torsion natural frequency, cycles per second

uncoupled first torsion frequency relative to elastic axis,

I

per second

i \ ft/J /

experimental flutter frequency, cycles per second

reference flutter frequency, cycles per second

flutter frequency determined by analysis of present report,

cycles per second

free-streamvelocity, feet per second

experimental flutter speed, feet per second

component of air-stream velocity perpendicular to elastic axis,
feet per second (v cos A)

experimental flutter speed taken parallel to air stream, miles

per hour

reference, flutter speed, miles per hour

reference flutter speed based on
in appendix B)

E.A.', miles per hour (defined

flutter speed determined by theory of present report, miles

per hour
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VD

_

q

M

C.G.

E°Ao

_oAB !

a

a+x_

m

r_

EI

theoretical divergence speed, miles per hour

reduced frequency employing velocity component perpendicular

to elastic axis (v_bn)

phase difference between wing bending and wing torsion strains,
degrees

density of testing medium at flutter, slugs per cubic foot

dynamic pressure at flutter, pounds per square foot

Mach number at flutter

criticalMach number

distance of center of gravity behind leading edge taken perpen-

dicular to elastic axis, percent chord

distance of elastic center of wing cress section behind leading

edge taken perpendicular to elastic axis, percent chord

distance of elastic axis of wing behind leading edge taken

perpendicular to elastic axis, percent chord

_2E.A.
nondimensional elastic axis position \ _-_

nondimensional center_f-gravity position _

mass of wing per unit length, slugs per foot

wing mass-density ratio at flutter _)

mass moment of inertia of wing per unit length about elastic
axis, slug-feet 2 per foot

nondimensional radius of gyration of wing about elastic axis

bending rigidity, pound-lnches 2
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GJ

g

torsional rigidity, pound-inches 2

structural damping coefficient

EXPERIMENTAL INVESTIGATION

Apparatus

z

l

Wind tunnel.- The tests were conducted in the 4_-foot-dlameter

Langley flutter tunnel which is of the closed throat, single-return

type employing either air or Freon-12 as a testing medium at pressures

varying from 4 inches of mercury to 30 inches of mercury. In Freon-12,

the speed of sound is 324 miles per hour and the density is 0.0106 slugs

per cubic foot at standard pressure and temperature. The maximum choking

Mach number for these tests was approximately 0.92. The Reynolds number

range was from 0.26 × 106 to 2.6 × 106 with most of the tests at

Reynolds numbers in the order of i.O x 106.

Models.- In order to obtain structural parameters required for the

flutter studies, different types of construction were used for the

models. Some models were solid spruce, others were solid balsa, and

man_ were combinations of balsa with various dural inserts. Seven series

of models were investigated, for which the cross sections and plan forms

are shown in figure i.

Figure l(a) shows the series of models which were swept back by

shearing the cross sections parallel to the air stream. In order to

obtain flutter with these low-aspect-ratio models, thin sections and

relatively light and weak wood construction were employed.

The series of rectangular-plan-form models shown in figure l(b) were

swept back by using a base mount that could be rotated to give the

desired sweep angle. The same base mount was used for testing models at

forward sweep angles. It is known that for forward sweep angles diver-

gence is critical. In an attempt to separate the divergence and flutter

speeds in the sweepforward tests, a D-spar cross-sectional construction

was used to get the elastic axis relatively far forward (fig. l(c)).

Two series of wings (figs. l(d) and l(e)) were swept back with the

length-to-chord ratio kept constant. In these series of models, the

chord perpendicular to the leading edge was kept constant and the bases

were aligned parallel to the air stream. The wings of length-to-chord

ratio of 8.5 (fig. l(d)) were cut down to get the wings of length-to-

chord ratio of 6.5 (fig. l(e)).

Another series of models obtained by using this same manner of

sweep (fig. l(f)) was used for investigating some effects of tip shape.
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Spanwise strips of lead were fastened to the modcls shown in
figure l(e) and a series of tests were conducted with these weighted
models to determine the effect of center-of-gravity shift on the flutter
speed of swept wings. The method of varying the center of gravity is
shown in figure l(g). In order to obtain data at zero sweep angle it
was necessary, because of the proximity of flutter speed to wing-
divergence speed_ to use three different wings. These zero-sweep-angle
wings, of 8-inch chord and 48-1rich length 3 had an internal weight
system.

The models were mounted from the top of the tunnel as cantilever
beamswith rigid bases (fig. 2). Near the root of each model two sets
of strain gages were fastened_ one set for recording principally bending
deformations and the other set for recording principally torsional
deflections.

Methods

Determination of model parameters.- Pertinent geometric and struc-

tural properties of the model are given in tables I to VII. Some

parameters of interest are discussed in the following paragraphs.

As an indication of the nearness to sonic-flow conditions_ the

criticai Mach number is listed. This Mach number is determined by the

K_(u-Tsien method for a wing section normal to the leading edge at

zero lift.

The geometric aspect ratio of a wing is here defined as

Semispan 2 (Z cos A) 2 = _ cos2 A =

Plan-form area Zc c 2

The geometric aspect ratio Ag is used in place of the conventional

aspect ratio A because the models were only semlspan wings. For

sheared swept wings, obtained from a given unswept wing, the geometric

aspect ratio is constant, whereas for the wings of constant length-to-

chord ratio the geometric aspect ratio decreases as cos2A as the

angle of sweep is increased.

The weight_ center-of-gravity position, and polar moment of

inertia of the models were determined by usual means. The models were

statically loaded at the tip to obtain the rigidities in torsion and

bending, C_ and El.

A para_cter occurring in the methods of analysis of this paper is

the position of the elastic axis. A "section" elastic axis desl_tatcd

E.A., was obtained for wings from each ser_es of modcls as fellows: the
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wings were clamped at the root normal to the leading edge and at a

chosen spanwise station were loaded at points lying in the chordwise

direction. The point for which pure bending deflection occurred, with

no twist in the plane normal to the leading edge, was determined. The

same procedure was used for those wings which were clamped at the root,

not normal, but at an angle to the leading edge. A different elastic
axis designated the 'King" elastic axis E.A.' was thus determined.

For these uniform, swept wings with fairly large length-to-chord

ratios, E.A. ' was reasonably straight and remained essentially parallel

to E.A., although it was found to move farther behind E.A. as the
angle of sweep was increased. It is realized that in general for non-

uniform wings, for example, wings with cut-outs or skewed clamping, a
certain degree of cross-stiffness exists and the conception of an

elastic axis is an over-simplification. More general concepts such as

those involving influence coefficients may be required. These more

strict considerations, however, are not required here since the elastic-

axi_ parameter is of fairly secondary importance.

The wing mass-density ratio • is the ratio of the mass of a

cylinder of testing medium, of a diameter equal to the chord of the wing,

to the mass of the wing, both taken for unit length along the wing. The
density of the testing medium when flutter occurred was used in the
evaluation of _.

Determination of the reference flutter speed.- It is convenient in
presenting and comparing data of swept and unswept wings to employ a

certain reference flutter speed. This reference flutter speed will
serve to reduce variations in flutter characteristics which arise from

changes in the various model parameters such as density and section

properties not pertinent to the investigation. It thus aids in system-

atizing the data and emphasizing the desired effects of sweep including

effects of aspect ratio and Mach number. -i

This reference flutter speed VR may be obtained in the following

way. Suppose the wing to be rotated about the intersection of the

elastic axis with the root to a position of zero sweep. In this posi-

tion the reference flutter speed is calculated by the method of

reference _3 which assumes an idealized, uniform, infinite wing mounted
on springs in an incompressible medium. For nonuniform wings, a refer-

ence section taken at a representative spanwise position, or some

integrated value, may be used. Since the wings used were uniform, any
reference section will serve. The reference flutter speed may thus be

considered a "section" reference flutter speed and parameters of a

section normal to the leading edge are used in its calculation. This

calculation also employs the uncoupled first bending and torsion

frequencies of the wing (obtained from the measured frequencies) and the
measured density of the testing medium at time of flutter. The calcu-

lation yields a corresponding reference flutter frequency which is useful

in comparing the frequency data. For the sake of completeness a further
discussion of the reference flutter speed is given in appendix B.
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Test procedure and records.- Since flutter is often a sudden and

destructive phenomenon, coordinated test procedures were required.

During each test, the tunnel speed was slowly raised until a speed was
reached for which the amplitudes of oscillation of the model In bending

and torsion increased rapidly while the frequencies in bending and

torsion, as observed on the screen of the recording oscillograph, merged

to the same value. At this instant, the tunnel conditions were recorded
and an oscillograph record of the model deflections _s taken. The

tunnel speed was i_ediately reduced in an effort to prevent destruction
of the model.

From the tunnel data, the experimental flutter speed Ve, the

density of the testing medium p, and the Mach number M were deter-
mined. No blocking or wake corrections to the measured tunnel velocity

were applied.

From the oscillogram the experimental flutter frequency fe and

the phase difference @ (or the phase difference _180 °) between the

bending and torsion deflections near the root were read. A reproduction

of a typical oscillograph flutter record, indicating the flutter to be
a coupling of the wing bending and torsion degrees of freedom, is shown

as figure 3. Since semlspan wing_ mounted rigidly at the base were

used, the flutter mode m_y be considere_ to correspond to the flutter of

a complete wlng having a very heavy fuselage at midspan, that Is, to the
symmetrical type.

The natural frequencies of the models in bending and torsion at

zero air speed were recorded before and after each test in order to

ascertain possible changes in structural characteristics. In most cases
there were no appreciable changes in frequencies but there were some
reductions in stiff_esses for models which had been '_orked" by

fluttering violently. Analysis of the decay records of the natural

frequencies indicated that the wing damping coefficients g (refer-

ence 5) were about 0.02 in the first bending mode and 0.03 In the torsion
mode.

ANALYTICAL INVESTIGATION

General

Assumptions.- In examining some of the available papers, it appeared
that an analysis could be developed in which a few more reasonable

assumptions might be used. The following assumptions seem to be appli-

cable for wings of moderate taper and not too low aspect ratio:

(a) The usual assumptions employed In linearized treatment of

unswept wings in an ideal incompressible flow.
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(b) Over the main part of the wlng the elastic axls Is straight.

The wing is sufficiently stiff at the root so that it behaves as If It

were clamped normal to the elastic axis. An effective length _'

needed for integration reasons may be defined (for example, as in

flg. 4). The angle of sweepback Is measured in the plane of the wlng

from the direction normal to the air stream to the elastic axis. All

section parameters such as semlchord, locations of elastic axls and

center of gravity, radius of gyration, and so forth, are based on
sections normal to the elastic axis.

(c) The component Of wlnd velocity parallel to the tangent to the

local elastic axis in its deformed position may be neglected.

It may be appropriate to make a few remarks on these assumptions.

Incompressible flow Is assumed in order to avoid complexity of the

analysis although certain modlflca$ions due to Mach number effects can

be added as for the unswept case. In the analysis of unswept wings

having low ratios of bending frequency to torsion frequency, small

variations of position of the elastic axls are not important. It Is

expected that the assumption of a straight elastic axis over the main

part of a swept wing is not very critical. Modifications are necessary

for wings which differ radically from this assumption.

Assumption (c) implies that only the component v cos A of the

main stream velocity is effective in creating the circulation flow

pattern. Thls assumption differs from that made in reference 3, which

employs the maln stream velocity itself together wlth sections of the

wing parallel to the maln stream. The component v sln A cos a along

the deformed position of the elastic axis Is deflected by the bending

curvature at every lengthwise position. Associated with the flow

deflections there Is an effective increase in the bending stiffness and

hence in the bending frequency. CA wing mounted at 90o sweep has an

increasing natural bending frequency as the airspeed increases.) This

stiffening effect, which is neglected as a consequence of assumption (c),

Is strongest at large angles of sweep and high airspeeds. However, even

under such conditions, it appears that a correction for thls effect is

still quite small. There is also an associated damping effect.

Basic considerations.- Consider the configuration shown in flgure 4

where the vertical coordinate of the wlng surface ls denoted by

z' = Z(x',y',t) (positive downward). The component of relative wind

velocity (positive upward) normal to the surface at every point is, for

small deflections,

w(x',y',t) = _+ v 8Z (1)8_

where _ Is the coordinate in the windstream direction. With the use

of the relation
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= cos A 8Z+ sin A 8Z
8x'

the vertical velocity at any point is

w(x',y',t) = _+ v cos A_-7 + v sin A _-T
(Za)

Let the wing be twisting through an angle 0 (positive, leading

edge up) about its elastic axis and bending at an angle o (positive,

tip bent down.) Consider that a segment dy' of the wing acts as part

of a semirigid wing which is pivoting about a bending axis parallel to

the x-axis at a location Yo" Then the position of each point of the

segment may be defined, for small deflections, by

Z = x'0 + (y' -yo)V (2)

Then the vertical velocity becomes

w = x'e + (y' - yo)_ + (v cos A)e + (v sin A)_ (3)

The term (Y' - Yo)_ is actually h (the vertical displacement of the

elastic axis from its undeformed position) and, thus, (Y' - Yo)8 is _.
3h

The local bending slope _ is equivalent to tan o _ _. In general,

an additional term appears in the vertical velocity involving the change

of twist; namely, (v sinA)x' _Vy," For constant twist (semirigid mode)

this term is zero. For general twist, this term may be readily included

in the analysis although it has not been retained in the subsequent
calculations.

In reference 6 the circulatory and noncirculatory potentials

associated with the various terms of position or motion, e, 8, E, which

contribute to the vertical velocity w, are developed. Required here

also are the potentials associated with o corresponding to the last

term in the expression for w, which term is observed to be independent

of the chordwise position. For example, the noncirculatory potentials

with the use of assumption (c) take the form:
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=v=eb -2 i

_ = Vn_(tan A)b_ - X 2

where vn = v cos A and x is the nonAimensional chor_wise coordinate

measured from the mldchord as in reference 6, related to x' in the

manner

It is observed that _ is similar in form to _e aug #_ aug

therefore its complete treatment follows a parallel development. For

sinusoidal motion of each degree of freedom, the aerodynamic force P

an_ moment M_ for a unit lengthwise segment of a swept wing, analogous

to the development for the unswept wing in reference 6, may be written

_ VnP = (F + iG) i h + 2(F + iG) _ tanA

+ _h + _8 tan A + 2(F + iG) e

+ + 2(F + IG) e - _ (-_ob3_) (_)
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F

I- I1 1 1 _ - 2(F + IG)ll+ al vnM_ = 2(F + iG) + a _

L

tanA

-_h - _8 tanA- 2(F + iG) + e

1 (6)

It is pointed out that the reduced frequency parameter kn

contained in equations (5) and (6) is defined by

kn =__kb= mb
vn v cos A

(7)

where F(kn) + iG(kn) = C(kn) is the function develope_ by Theodorsen

in reference 6.

As has already been stated, the foregoing expressions were developed

and apply for steady sinusoidal oscillations,

h = h 'ei_t

e = e 'ei_t (8)

= _ 'ei_t

The amplitude, velocity, and acceleration in each degree of freedom are
related as in the h degree of freedom_ that is,

%

_=i_h
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Expressions for force and moment.- With the use of such relations

equations (5) and (6) may be put into the form

p = ._t3_2 [h Ach + _ tanA i _-_nAch
(9)

I_m = -_pb4a)2 I_ Aah + e tan A i _n + e
(i0)

where

t_ 92

= -1 - + i

Aac_ = -_ - _-+ a k--_+ _-- a 2 _-

In passing it maybe observed that for the stationary case,

equations (5) and (6) or (9) and (lO) reduce to

P = -2xpbVn2(e + _ tan A) (9a)

M_ = 2_pb2vn2(_-+ a)(e + _ tan A)

for each foot of wing length along the y'-axis.

(10a)
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Since for small amplitudes of oscillation the bending slope and

( _-_> there are actually only twobending deflection are related _ _, ,

degrees of freedom in equations (9) and (lO). These equations become

p =-_pb3_2_ Ach + _h_7_ (tan A)I-i l_nnAch) + eAcm 1
(ll)

4_21h _h (tan A)(-i 1 A&hl + eAa__]
(12)

Introduction of modes.- Equations (ii) and (12) give the total

aerodynamic force and moment on a segment of a sweptback wing oscil-

lating in a simple harmonic manner. Relations for mechanical equilibrium

applicable to a wing segment maybe set up, but it is preferable to bring

in directly the three-dimensional mode considerations. (See for example,

reference 7") This end may be readily accomplished by the combined use

of Rayleigh type approximations and the classical methods of Lagrange.
The vibrations at critical flutter are assumed to consist of a combi-

nation of fixed mode shapes, each mode shape representing a degree of

freedom, given by a generalized coordinate. The total mechanical kinetic

energy, the potential energy, and the work done by applied forces, aero-

dynamic and structural, are then obtained by integration of the section

characteristics over the span. The Rayleigh type approximation enters

in the representation of the potential energy in terms of the uncoupled

natural frequencies.

As is customary, the modes are introduced into the problem as

varying sinusoidally with time. For the purpose of simplicity of analy-

sis, one bending degree of freedom and one torsional degree of freedom

are carried through in the present development. Actually, any number

of degrees of freedom may be added if it is so desired, exactly as with

an unswept wing. Let the mode shapes be represented by

h = _fh(y')_h where

e = _fe(y')_e_ where

= hoei_t

= eoei_t

(13)

(in a more general treatment the mode shapes must be solved for, but in

this procedure, fh(Y') and fe(Y') are chosen, ordinarily as real

functions of y'. Complex functions may be used to represent twisted
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modes.) The constants ho and eo are in general complex, and thus

signify the phase difference between the two degrees of freedom.

For each degree of freedom an equation of equilibrium may be

obtained from Lagrange's equation:

(z4)

The kinetic energy of the mechanical system is

f0 f0
fo z'

The potential energy of the mechanical system may be ex_resse_ in a form

not involving bending-torsion cress-stiffness terms:

fo z ' fO z '

1 r- _ o 1 F_ ,'7o
(z6)

where

m

Ch

mass of wing perunit length, slugs per foot

mass moment of inertia2ofwing about its elastic axis per unit
length, slug- feet per foot

distance of sectional center of gravity from the elastic axis,

positive rearward, feet

'Bffectlve" bending stiffness of the wing, corresponding to

unit length, pounds per foot of deflection per foot of length

'Bffective" torsional stiffness of the wing about the elastic

axis, corresponding to unit length, foot-pounds per radian
of deflection per foot of length
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.%,

If Rayleigh type approximations are used the expression for the

potential energymay be written:

IO 7"' IO 7'' 2e_2
(16a)

where

dyY

These relations effectively define the spring constants Ch and Ca.

Application is now made to obtain the equation of equilibrium in
the bending degree of freedom. Equation (14) becomes

dt _ 8h 8h

The term Qh represents all the bending forces not derivable from the

potential-energy function and consists of the aerodynamic forces together
with the structural damping forces. The virtual work d(SW) done on

a wing segment by these forces as the wing moves through the virtual

displacements, 8h and 5e, is:
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(I)

= (_Qh)Sh÷ (_)Se_ (18)

where

gh

g_

structural damping coefficient for bending vibration

structural damping coefficient for torsional vibration

It is observed that in this expression the forces appropriate to sinu-

soidal oscillations are used. The application of the structural damping

in the aforementioned manner (proportional to deflection and in phase
with velocity) corresponds to the manner in which it is introduced in

reference 9"

For the half-wing

Qh = _ ma_n2 gh [fh (Y' h (Y ']] dy'

_0
____b 3_2 Aoh[MY'_\brjLb

_i h) Efh(_')]d [fh(Y')]-h- _A c tanA _r

, ,
* O_Ac_h(Y )][fo(Y )]+_ L_ ,jj _y

' (19)
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where br is the semlchord at somereference section. Performance of
the operations indicated in equation (17) and collection of terms lead
to the equation of equilibrium in the bending degree of freedom:

_ 3_(,,)j 2_,

IO _' i_tan A
+i kn b3 1

Io' t+ 19 \brJ \ !_ " Ac h (y ' _pbr 3a_2 =0 (20)

where

i m

By a parallel development the equation of equilibrium for the

torsional degree of freedom may also be obtainedj
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+i
0Z' i

_tanA

fo"b 4
= o (21)

where ra = _ (radius of gyration of wing about the elastic axis).

Determinantal equation for flutter.- Equations (20) and (21) may be
!

rewritten with the use of the nondimensional coordinate, _ = Y---. They

then are in the form

_hA + eBl_ObrB_ 2 = 0 (20a)

where

[__+___.._<_: o (21a)
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ll.O= _i )_' b 2

,

fo_o (_)<hC_(__:J+ i --_-tanA d [Fh(_)- 1 d_
L -J

fo_'° _)E_

Io_°(_)(

I I.0

+ i ---itan A
kn

0

} lO 1,0

-7,'

dq

where Fh(_) = fh(Z '_) and Fe(_) = fe(_ '_).

The borderline condition of flutter, separating damped and undamped

oscillations, is determined from the nontrivial solution of the simul-
taneous homogeneous equations (20a) and (21a). Such a solution corre-

sponds to the fact that mechanical equilibrium exists for sinusoidal

oscillations at a certain airspeed and with a certain frequency. The
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flutter condition thus is given by the vanishing of the determinant of
the coefficients

A1 B1

DI E1

=0

Application to the case of uniform, cantilever, swept wings is
madein the next section.

Application to Uniform, Cantilever, SweptWings

The first step in the application of the theory is to assumeor
develop the deflection functions to be used. For the purpose of applying
the analysis to the wing models employed in the experiments it appeared
reasonable to use for the deflection functions, Fh(_) and Fe(q) , the
uncoupled first bending and first torsion modeshapes of an ideal uniform
cantilever beam. Although approximations for these modeshapes could be
used, the analysis utilized the exact expressions (reference 8).

@

The bending mode shape can be written

where 91 = 0.5969_ for first bending.

written

C %__'-TT'C__'sinh91+ sin 91 _cos 9IN -cosh 91_]Fh(n)
91+ cos

+ slnh _i_ - sin 91_}

The torsion mode shape can be

Fe(h) = C 2 sin 92h

where 92 = _ for first torsion and C I and C 2 are constants.

The integrals appearing in the determinant elements A1, B1, D1,

and E 1 are:



NACA RM No. L8H30 23

d_ = 1.8554012

i.0 d
= 3.7110CI 2

= -0.9233CIC 2

_.o _ [_h_)3_ = -2. o669c1C2

dn = 0.5000022

The flutter determinant becomes

(1.8554C12 ) _r A + (3 i A

Z' 1 A

or more conveniently:

('--A + fi.O000 h
br

o.9189FrrD + 2.0569 Aah

tan A

tan A

tan A

tan A

(-o.9233c1ce)z '_

(0.5000C22) _ 'E

B

=0

E

=0
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where

x_
B = _ - Acm

x_
D=m-Aah

r_2[i I_--_12 g_)l- (l+i

The solution of the determinant results in the flutter condition.

RESULTS AND DISCUSSION

Experimental Investigation

Remarks on tables I to VII and.figures _ to i0.- Results of the

experimental investigation are listed in detail in tables I to VII and

some significant experimental trends are illustrated in figures 5 to i0.

As a basis for presenting and comparing the test results the ratio of

experimental tunnel stream conditions to the reference flutter conditions

is employed so that the data indicate more clearly combined effects of

aspect ratio, sweep, and Mach number. As previously mentioned, use of

the reference flutter speed VR serves to reduce variations in flutter

characteristics which arise from changes in other parameters, such as

density and section properties, which are not pertinent to this investi-

gation. (See appendix B.)

Some effects on flutter speed.- A typical plot showing the effect
of compressibility on the flutter speed of wings at various angles of

sweepback is shown in figure 5. These data are from tests of the

rectangular plan-form models (type 30) that were swept back by use of

the rotating mount, for which arrangement the reference flutter speed
does not vary with either Mach number or sweep angle. Observe the large

increase in speed ratio at the high sweep angles.

The data of references i and 2, from tests of semirigid rectangular

models having a rotating base, are also plotted in figure 5. It can be
seen that the data from the rigid base models of this report are in good

conformity with the data from the semirigid models using a similar method
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of sweep. This indicates that, for uniform wings having the range of .....
parameters involved in these tests, the differences due to modeshape
are not very great.

Figure 6 is a cross plot of the data from figure 5 plotted against A
at a Machnumber approximately equal to 0.65. The data of the swept
wings of constant length-to-chord ratio and of the sheared swept wings
are also included for Comparison. The velocity ratio Ve/VR is
relatively constant at small sweepangles, but rises noticeably at the
large sweepangles. Observe that the reference flutter speed VR may

be considered to con_spond to a horizontal line at V-_e = 1 for the
VR

rotated and constant length-to-chord ratio wings, but for the sheared
wings corresponds to a curve varying with A in a manner somewhat
higher than _ _ (See appendix B. )

The order of magnitude of somethree-dlmenslonal effects maybe

noted fromthe fact that the shorter wings (_= 6.5, fig. 6, series V)

have hlgher veloclty ratios than the longer wings (_ = 8.53 series IV).
This increase may be due partly to differences in flutter modesas well
as aerod_c effects.

Some effect on flutter frequency.- Figure 7 is a representative

plot of the flutter-frequency data given in table II. The figure shows

the variation in flutter-frequency ratio with Mach number for different
values of sweep angle for the models rotated back on the special mount.

The ordinate is the ratio of the experimental flutter frequency to the

reference flutter frequency fe/fR. It appears that there is a reduc-

tion in flutter frequency with increase in Mach number and also an
increase in flutter frequency with increase in sweep. The data from

references 1 and 2, when plotted in this manner, show the same trends.
It may be noted that there is considerably more scatter in the frequency

data than in the speed data (fig. 5) from the same tests.

The results of the tests for rotated wings with chordwise lami-

nations (models 4OA, B, C, D) are given in table II. At sweep angles

up to 30o the values of the speed ratio Ve/VR for wings of this

construction were low (in the neighborhood of 0.9), and the flutter

frequency ratios fe/fR were high (of the order of 1.4). As these

results indicate and as visual observation showed, these models fluttered
in a mode that apparently involved a considerable amount of the second

bending mode. The models with spanwise laminations (models 30A, B, C, D)

also showed indications of this higher flutter mode at low sweep angles.

However, it was possible for these models to pass through the small speed
range of higher mode flutter without sufficiently violent oscillations to

cause failure. At a still higher speed these models with spanwise lami-
nations fluttered in a lower mode resembling a coupling of the torsion
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and first bending modes. This lower modetype of flutter characterized
the flutter of the sheared and constant length-to-chord ratio models.

For those wing models having the sheared type of balsa construction
(models 22 ', 23, 24, and 25) the results are more difficult _o compare
with those of the other models. This difficulty arises chiefly because
the lightness of the woodproduced relatively high mass-density ratios
and partly because of the nonhomogeneity of the mixed wood construction.
For high values of • the flutter-speed-coefficient changes rather
abruptly even in the unswept case (reference 5). The data are neverthe-
less included in table I.

Effect of shift in center-of-gravitF position on the flutter speed
of swept wings.- Results of the investigation of the effects of center-

of-gravity shift on the flutter speed of swept wings are illustrated in

figure 8. This figure is a cross plot of the experimental indicated air

speeds as a function of sweep angle for various center-of-gravlty posi-

tions. The ordinate is the experimental indicated air speed Ve,/ 0
V0 .00238'

which serves to reduce the scatter resulting from flutter tests at

different densities of testing medium. The data were taken in the Mach

number range between 0.14 and 0.44, so that compressibility effects are

presumably negligible. As in the case of unswept wings, forward movement

of the center of gravity increases the flutter speed. Again, the flutter
speed increases with increase in the angle of sweep.

The models tested at zero sweep angle (models 91-1, 91-2, 91-3) were

of different construction and larger size than the models tested at the

higher sweep angles. Because of the manner of plotting the results,
namely as experimental indicated airspeed (fig. 8), a comparison of the

results of tests at A = 0° with the results of the tests of swept

models is not particularly significant. The points at zero sweep angle
are included, however, to show that the increase in flutter speed due to a

shift in the center-of-gravity position for the swept models is of the

same order of magnitude as for the unswept models. It is remarked that,

for the unswept models, the divergence speed VD, and the reference

flutter speed VR are fairly near each other. Although in the experi-

ments the models appeared to flutter, the proximity of the flutter speed
to the divergence speed may have influenced the value of the critical

speed.

The method used to vary the center of gravity (see fig. l(g))

produced two bumps on the airfoil surface. At the low Mach numbers of

these tests, however, the effect of this roughness on the flutter speed
is considered negligible. It may be borne in mind in interpreting

figure 8 that the method of varying the center of gravity changed the

radius of gyration ra and the torsional frequency fm.
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The effect of sweepforward on the critical speed.- An attempt was
made to determine the variation in flutter speed with angle of sweep-

forward by testing wings on the mount that could be rotated both back-

ward and forward. As expected, however, the model tended to diverge at
forward sweep angles in spite of the relatively forward position of the

elastic axis in this D-spar wing.

Figure 9 shows a plot of the ratio of critical speed to the refer-

ence flutter speed VR against sweep angle A. Note the different

curves for the sweptback and for the sweptforward conditions, and the
sharp reduction in critical speed as the angle of sweepforward is

increased. The different curves result from two different phenomena.

When the wing was swept back, it fluttered, while at forward sweep angles
it diverged before the flutter speed was reached. Superimposed on this

plot for the negative values of sweep are the results of calculations

based on an analytical study of divergence (reference 9)" There is

reasonable agreement between theory and experiment at forward sweep

angles. The small difference between the theoretical and experimental

results may perhaps be due to an inaccuracy in determining either the

elastic axis of the model or the required slope of the lift curve or
both.

The divergence speed V D for the wing at zero sweep angle, as

calculated by the simplified theory of reference 5, is also plotted in
figure 9" This calculation is based on the assumption of a two-

dimensional unswept wing in an incompressible medium. The values of the

uncoupled torsion frequency and the density of the testing medium at

time of-flutter or divergence are employed. Reference 9 shows that

relatively small sweepback raises the divergence speed sharply. However,

for convenience the numerical quantity VD (based on the wing at zero

sweep) is listed in table I for all the tests.

Effect of tip modifications.- Tests to investigate some of the over-
all effects of tip shape were conducted and some results are shown in

figure 10. Two sweep angles and two length-to-chord ratios were used in

the experiments conducted at two Mach numbers. It is seen that, of the

three tip shapes used; namely, tips perpendicular to the air stream,

perpendicular to the wing leading edge, and parallel to the air stream,
the wings with tips parallel to the air stream gave the highest flutter

speeds.

Discussion and Comparison of Analytical - _ -

and Experimental Results .........

Correlation of analytical and experimental results has been made for

wings swept back in the two different manners; that __s,(1) sheared back

with a constant value of Ag, and (2) rotated back.iJ°The two types of

sheared wings (series I) and two rotated wings (mod@ls 30B and 30D) have
been analyzed.
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Results of some solutions of the flutter _eterminant for a wlng

(mo_el SOB) on a rotating base at several angles of sweepback are shown

in figures ll and 12. Figure ll shows the flutter-speed coefficient as

_-- -_ a function of the bending to torslcm fr@quency rati0, while figure 12 .....

s_ows the flutter _re_uency rati_ _ _f_ction of the bending to torsion

frequency ratio.

The calculated results (for those wings investigated analytically)

are included in tables I and II. The ratios of experimental to analytical

flutter speeds and flutter frequencies have been plotted against the

angle of sweep in figures 13 to 16. If an experimental value coincides

with the corresponding analytically predicted value, the ratio will fall

at a value of 1.0 on the figures. Deviations of experimental results

ahoy3 or below the analytical results appear on the figures as ratios

respectively greater than or less than 1.0. The flutter-speed ratios

plotted in figure 13 for the two rotated wings show very good agreement

between analysis and experiment over the range of sweep angle, 0 O to 60 ° .

Inclusion in the calculations for model 30]3 of the change-of-twist term

previously mentioned in the discussion following e_uation (3) would

increase the ratio Ve/V A corresponding to A = 60 u by less than

3 percent. Such good agree_nt in both the trends au_ in the numerical

quantities is gratlfying but probably should not be expected in general.

The flutter frequency ratios of figure l_ obtained from the sam_ two

rotated wings are in good agreement.

The flutter-speed ratios plotted in figure 15 for the two types of

sheared wings do not show such goo_ conformity at the low angles of

sweep, while for sweep augles beyon_ 45 ° the ratios are considerably

nearer to 1.0. It is again observed that the sheared wings have a

constant value of Ag of 2.0 (aspect ratio for the whole wing would

be 4.0). For this small value of aspect ratio the finite-spau correction

is appreciable at zero angle of sweep and, if made, would bring better

agreement at that point. Analysis of the corrections for finite-span

effects on swept wings are not yet available.

Figures 13 and 15 also afford a cc_parlson of the behavior of wings

swept back in two manners: (i) rotated back with constant length-to-

chord ratio but decreasing aspect ratio (fig. 13), and (2) sheared back

with constant aspect ratio and increasing length-to-chord r_tio (fig. 15)-

It appears from a study of these two figures that the length-to-chord

ratio rather than the aspect ratio area may be the relevant

parameter in determining corrections for finite swept wings. (Admittedly,

effects of tip shape and root condition are also involved and have not

been precisely separated •)

Figure 16 which refers to the ss_e sheared wings as figure 15 shows

the ratios of experimental to predicted flutter frequencies. The trend

is for the ratio to decrease as the angle of sweep increases. It may be

noted from table I that the flutter frequency fR obtained with VR
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and used as a reference in a previous section of the report is not

significantly different from the frequency fA predicted by the present
analys Is •

A few remarks can be made on estimates of over-all trends of the

flutter speed of swept wings. As a first consideration one would con-

clude that If a rigid infinite yawed wlng were mounted on springs which

permitted it to move vertically as a unit and to rotate about an elastic

axis, the flutter speed would be proportional to 1 A finlte yawed
cos A

wing mounted on similar springs would be expected to have a flutter speed
1

lying above the curve of --because of flnite-span effects. However,
cos A

for a finite sweptback wing clamped at Its root, the greater degree of

coupling between bending and torsion adversely affects the flutter speed

so as to bring the speed below the curve o_ 1 for an infinite wing.
cos A

This statement is' illustrated in figure 17 which refers to a wing

(model 30B) on a rotating base. The ordinate is the ratio of flutter

speed at a given angle of sweep to the flutter speed calculated at zero

angle of sweep. A theoretical curve is shown, together with experi-

mentally determined points. Curves of __I__ and _ 1 are shown
cos A VS_N-E

for convenience of comparison. The curve for model 30D, not shown In

figure 17, also followed this trend quite closely. The foregoing remarks

should prove useful for making estimates and discussing trends but of
course are not intended to replace more complete calculation.

It is polnted out that the experiments and calculations deal in

general with wings having low ratios of natural first bending to first
torsion frequencies. At hlgh values of the ratio of bending frequency

to torsion frequency, the position of the elastic axis becomes relatively

more significant. Additional calculations to develop the theoretical
trends are desirable.

CONCLUSIONS

In a discussion and comparison of the results of an investigation

on the flutter of a group of swept wings, it is important to distinguish
the manner of sweep. This paper deals wlth two main groups of uniform,

swept wings: rotated wings and sheared wings. In presenting the data

it was foun_ convenient to employ a certain reference flutter speed. The

following conclusions appear to apply:

1. Comparison with experiment indicates that the analysis presented

seems satisfactory for nearly uniformcantilever wings Ofmoderate length-

to-chord ratios. Additional calculations are desirable to investigate
various theoretical trends.
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2. The coupling between bending and torsion adversely affects the

flutter speed. Eowever, the fact that only a part of the forward velocity

is aerodynamically effective increases the flutter speed. Certain

approximate relations can be used to estimate some of the trends.

3. Although a precise separation of the effects of Mach number,

aspect ratio, tip shape, and center-of-gravlty position has not been

accomplished, the order of magnitude of some of these combined effects

has been experimentally determined. Results indicated are:

(a) The location of the section center of gravity is an

important parameter and produces effects similar to those in the

unswept case.

(b) Appreciable differences in flutter speed have been found

to be due to tip shape.

(c) It is indicated that the length-to-chord ratio of swept

wings is a more relevant finite-spanparameter than the aspect

ratio.

(d) The experiments indicate that compressibility effects

attributable to Mach number are fairly small, at least up to a Mach

number of about 0.8.

(e) The sweptforward wings could not be made to flutter but

diverged before the flutter speed was reached.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field, Va.
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APPENDIX A

THE EFFECT OF SWEEP ON THE FREQUENCIES OF A CANTILEVER BEAM

Early in the investigation it was decided to make an experimental

vibration study of a simple beam at various sweep angles. The uniform,
plat'e-like dural beam shown in figure 18 was used to make the study

amenable to analysis. Length-to-chord ratios of 6, 3, and 1.5 were
tested, the length Z being defined as the length along the midchord.

A single 60-inch beam was used throughoutthe investigation, the desired

length and sweep angle being obtained by clamping the beam in the proper

1 1
position with a l_ by l_ by 14-inch dural crossbar.

Figures 18 and 19 show the variation in modes and frequencies -_ith

sweep angle. It is seen that, in most cases, an increase in sweep angle

increases the natural vibration frequencies. As expected, the effect of
sweep is more pronounced at the smaller values of length-to-chord ratio.

The fundamental mode was found by striking the beam and measuring the

frequency with a self-generatlng vibration pick-up and paper recorder.

The second and third modes were excited by light-weight electromagnetic
shakers clamped to the beam. These shakers were attached as close to the

root as possible to give a node either predominantly spanwise or chord-
,!

wise. The mode with the spanwise node, designated "second mode, was

primarily torsional vibration while the mode with the chordwise node,
designated "third mode, " was primarily a second bending vibration.

The first two bending frequencies and the lowest torsion frequency,

determined ana]Jtically for a straight uniform unswept beam, are plotted

in figure 19. There is good agreement with the experimental results for

the length-to-chord ratios of 6 and 3, but for a ratio of 1-5 (length
equal to 12 inches and chord equal to 8 inches) there was less favorable
agreement. This discrepancy may be attributed to the fact that the beam

at the short length-to-chord ratio of 1.5 resembled more a plate than a

beam and did not meet the theoretical assumptions of a perfectly rigid
base and of slmple-beam stress distributions. The data is valid for use

in comparing the experimental frequencies of the beam when swept, with
the frequencies at zero sweep which was the purpose of the test.



32 NACARMNo. LSH30

APPENDIXB

DISCI_BSIONOFTHEREFEKENCEFLIYlTERSPEED

General.- For use in comparing data of swept and unswept wings, a

'_eference" flutter speed VR is convenient. This reference flutter

speed is the flutter speed determined from the simplified theory of

reference _. This theory deals with two-dimenslonal unswept wings in

incompressible flow and depends upon a number of wing parameters. The
calculations in this report utilize parameters of sections perpendicular

to the leading edge, first bending frequency, uncoupled torsion frequency,

density of testing mediumat time of flutter, and zero damping.

Symbolically:

VR = ba_f , C.G., E.A., r_2,

Variation in reference flutter speed with sweep an_le for sheared

swept wlngs.- The reference flutter speed is independent of sweep angle

for a homogeneous rotate_wing and for homogeneous wings swept back by

keeping the length-to-chord ratio constant. However, for a series of

homogeneous wings swept back by the method of shearing, there is a
definite variation in reference flutter speed with sweep angle, because

sweeping a wing by shearing causes a reduction in chord perpendicular to

the wing leading edge and an increase in length along the midchord as

the angle of sweep is increased. The resulting reduction in the mass°
density-ratio parameter and first bending frequency tends to raise the

reference flutter speed while the reduction in semichord tends to lower

the reference flutter speed as the angle of sweep is increased. The

final effect upon the reference flutter speed depends on the other prop°

erites of the wing. The purpose of this section is to show the effect

of these changes on the magnitude of the reference flutter speed for a

series of homogeneous sheared wings having properties similar to those

of the sheared swept models used in this report.

Let the subscript o refer to properties of the wing at zero sweep

angle. The following parameters are then functions of the sweep angle:

b = bo cos A

I = I0
cos A
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Since m is proportional to b,

_Db2
--_ = _o cos Am

Similarly, since I is proportional to b

fhl: _2V_ :(fhl)o(c°__>_

Also, because fm is independent of A,

Ccoo
-_:\ f_/o

An estimate of the effect on the flutter speed of these changes in

semichord and mass parameter with sweep angle may be obtained from the

approximate formula given in reference 5.

O.5

VR%In_ 0.5+ a+x_

This approximate analysis of the effect on the reference flutter specd
does not depend upon the first bending frequency but assumes fh/fm to

be small.

In order to include the effect of changes in bending-torslon

frequency ratio, a more complete analysis must be carried out. Some
results of a numerical analysis are presented in figure 20, based on a

homogeneous wing with the following properties at zero sweep angle:
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C.G. = 90 bo = 0-333

E.A. = 49

r_ = o.25

f_ = I00

1 =10

f /o

In this figure the curve, showing the decrease in V R with A, is

slightly above the X/cos A factor indicated by the approximate formula.

Effect of elastic axis position on reference flutter speed.- As

pointed out in the definition of elastic axis, the measured locus of

elastic centers E.A.' fell behind the "section" elastic axis E.A. for

the swept models with bases parallel to the air stream. In order to get

an idea of the effect of elastic axis position on the chosen reference

flutter speed, computations were made both of V R and a second reference

flutter speed V R' similar to VR except that E.A.' was used in place

of E.A. The maxlmumdifference between these two values of reference

flutter speed was of the order of 7 percent. This difference occurred at

a sweep angle of 60 ° when E.A.' was farthest behind E.A. Thus, for

wings of this type, the reference flutter speed is not very sensitive to

elastic axis position. The reference flutter frequency fR' was found

in conjunction with V R' The maximum difference between fR and fR'

was less than l0 percent. Thus, the convenient use of the reference

flutter speed and reference frequency is not altered by these elastic-
axis considerations.
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Figure 6.' Cross plot of ratio of experimental to reference flutter velocity

as a function of sweep angle for various wings. Mach number is

approximately 0.65,
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Figure 8.- Cross plot of flutter speed as a function of sweep angle for several
center-of-gravity positions. Series VII models (fig. l(g)). Length-chord
ratio is approximately 6.
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Figure 11.- Theoretical flutter-speed coefficient as a function of the ratio of

bending to torsion frequency for the rotated model 30 B at two angles of

sweep andwithaconstantmass-densityratio (I= 37.8).
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Figure 12.- Ratio of theoretical flutter frequency to torsional frequency as a
function of the ratio of bending to torsion frequency for the rotated model

30B at two angles of sweep and with a constant mass-density ratio
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Figure 13.- FLatio of experimental to theoretically predicted flutter speed as
a function of sweep angle for two rotated models.
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Figure 14.- Ratio of experimental to theoretically predicted flutter frequency
as a function of sweep.angle for two rotated models.
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Figure 15.- Ratio of experimental to theoretically predicted flutter speed as
a function of sweep angle for two types of sheared models.
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Figure 16.- Ratio of experimental to theoretically predicted flutter frequency
as a function of sweep angle for two types of sheared wings.
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Figure 17.- Flutter-speed ratio as a function of sweep angle for model 30B

ataconstantmass-densityratio (1= 37.8), showinganalyticaland
experimental results.
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Figure 18.-
Change in nodal lines with sweep and length-chord ratio for the

vibration of a dural beam.
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_oŝ ---/

.2

i0 2O 30

A ,deg

Figure 20.- Variation in reference flutter speed with sweep for.sheared wings.


